Renormalization : a Number Theoretical Model
نویسنده
چکیده
We analyse the Dirichlet convolution ring of arithmetic number theoretic functions. It turns out to fail to be a Hopf algebra on the diagonal, due to the lack of complete multiplicativity of the product and coproduct. A related Hopf algebra can be established, which however overcounts the diagonal. We argue that the mechanism of renormalization in quantum field theory is modelled after the same principle. Singularities hence arise as a (now continuously indexed) overcounting on the diagonals. Renormalization is given by the map from the auxiliary Hopf algebra to the weaker multiplicative structure, called Hopf gebra, rescaling the diagonals. CONTENTS 1. Dirichlet convolution ring of arithmetic functions 1 1.1. Definitions 1 1.2. Multiplicativity versus complete multiplicativity 2 1.3. Examples 3 2. Products and coproducts related to Dirichlet convolution 4 2.1. Multiplicativity of the coproducts 6 3. Hopf gebra : multiplicativity versus complete multiplicativity 7 3.1. Plan A: the modified crossing 7 3.2. Plan B: unrenormalization 7 3.3. The co-ring structure 8 3.4. Coping with overcounting : renormalization 9 4. Taming multiplicativity 11 Appendix A. Some facts about Dirichlet and Bell series 12 A.1. Characterizations of complete multiplicativity 12 A.2. Groups and subgroups of Dirichlet convolution 13 Appendix B. Densities of generators 14 References 14 1. DIRICHLET CONVOLUTION RING OF ARITHMETIC FUNCTIONS 1.1. Definitions. In this section we recall a few well know facts about formal Dirichlet series and the associated convolution ring of Dirichlet functions [1, 4]. An arithmetic function is a Date: January 25, 2006. 2000 Mathematics Subject Classification. Primary 16W30; Secondary 30B50; 11A15; 81T15; 81T16.
منابع مشابه
A NUMERICAL RENORMALIZATION GROUP APPROACH FOR AN ELECTRON-PHONON INTERACTION
A finite chain calculation in terms of Hubbard X-operators is explored by setting up a vibronic Harniltonian. The model conveniently transformed into a form so that in the case of strong coupling a numerical renormalization group approach is applicable. To test the technique, a one particle Green function is calculated for the model Harniltonian
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملA numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators
Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...
متن کاملRenormalization of crumpled manifolds.
We consider a model of D-dimensional tethered manifold interacting by excluded volume in IR with a single point. By use of intrinsic distance geometry, we first provide a rigorous definition of the analytic continuation of its perturbative expansion for arbitrary D, 0< D < 2. We then construct explicitly a renormalization operation R, ensuring renormalizability to all orders. This is the first ...
متن کاملTechnical Notes and Correspondence Analysis of Pinning-Controlled Networks: A Renormalization Approach
In this paper, a renormalization approach is introduced for analyzing pinning-controlled networks. The renormalization process consists of two operations, edge weighting and node reduction, and is built on a new concept of passivity comparison in the sense of Lyapunov V-stability. Furthermore, a cascaded model resulted from the renormalization process in a layer structure is presented for estim...
متن کاملUniversality classes of three-dimensional mn-vector model
We study the conditions under which the critical behavior of the threedimensionalmn-vector model does not belong to the spherically symmetrical universality class. In the calculations we rely on the field-theoretical renormalization group approach in different regularization schemes adjusted by resummation and extended analysis of the series for renormalization-group functions which are known f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006